Skip to main content

Appalachian Center Events

Analysis and PDE Seminar

Title:  Sub-Exponential Decay Estimates on Trace Norms of Localized Functions of Schrodinger Operators

Abstract:  In 1973, Combes and Thomas discovered a general technique for showing exponential decay of eigenfunctions. The technique involved proving the exponential decay of the resolvent of the Schrodinger operator localized between two distant regions. Since then, the technique has been applied to several types of Schrodinger operators. Recent work has also shown the Combes–Thomas method works well with trace class and Hilbert–Schmidt type operators. In this talk, we build on those results by applying the Combes–Thomas method in the trace, Hilbert–Schmidt, and other trace-type norms to prove sub-exponential decay estimates on functions of Schrodinger operators localized between two distant regions.

Date:
-
Location:
745 Patterson Office Tower

Analysis and PDE Seminar

Title:  Sub-Exponential Decay Estimates on Trace Norms of Localized Functions of Schrodinger Operators

Abstract:  In 1973, Combes and Thomas discovered a general technique for showing exponential decay of eigenfunctions. The technique involved proving the exponential decay of the resolvent of the Schrodinger operator localized between two distant regions. Since then, the technique has been applied to several types of Schrodinger operators. Recent work has also shown the Combes–Thomas method works well with trace class and Hilbert–Schmidt type operators. In this talk, we build on those results by applying the Combes–Thomas method in the trace, Hilbert–Schmidt, and other trace-type norms to prove sub-exponential decay estimates on functions of Schrodinger operators localized between two distant regions.

Date:
-
Location:
745 Patterson Office Tower

Analysis and PDE Seminar

Title:  On the ground state of the magnetic Laplacian in corner domains

Abstract:  I will present recent results about the first eigenvalue of the magnetic Laplacian in general 3D-corner domains with Neumann boundary condition in the semi-classical limit.  The use of singular chains show that the asymptotics of the first eigenvalue is governed by a hierarchy of model problems on the tangent cones of the domain. We provide estimations of the remainder depending on the geometry and the variations of the magnetic field. This is a joint work with V. Bonnaillie-Nol and M. Dauge.

 

 

Date:
-
Location:
745 Patterson Office Tower

Analysis and PDE Seminar

Title:  On the ground state of the magnetic Laplacian in corner domains

Abstract:  I will present recent results about the first eigenvalue of the magnetic Laplacian in general 3D-corner domains with Neumann boundary condition in the semi-classical limit.  The use of singular chains show that the asymptotics of the first eigenvalue is governed by a hierarchy of model problems on the tangent cones of the domain. We provide estimations of the remainder depending on the geometry and the variations of the magnetic field. This is a joint work with V. Bonnaillie-Nol and M. Dauge.

 

 

Date:
-
Location:
745 Patterson Office Tower

DOPE 2014 Scholar/Activist Panel: Working Across Borders: US/Latin America Collaborations for Social and Environmental Justice

Featuring: Simón Sedillo (organizer and filmmaker); Geoff Boyce (Doctoral Candidate, School of Geography and Development, University of Arizona); Aviva Chomsky (Department of History, Salem State University); Vanessa Hall (Kentuckians for the Commonwealth); and Ann Kingsolver, (Department of Anthropology and Appalachian Studies Center, University of Kentucky)

Date:
-
Location:
Student Center Room 230