Skip to main content

Seed germination thermal niche differs among nine populations of an annual plant: A modeling approach.

Author
Abstract
:

Germination timing is an important determinant of survival and niche breadth of plants. The annual plant occurs in diverse environments along a steep temperature gradient and thus is a suitable model for the study of germination behavior in response to temperature. We used a modeling approach to compare the germination thermal niche of seeds of nine populations of produced in a common garden. Germination time courses were obtained by a newly developed process-based model, and thermal niche was visualized by plotting germination breadth as a function of after-ripening time. Seeds were sampled five times: immature (2 weeks before maturity), mature, and afterripened for 1, 2, and 5 months. Immature and mature seeds had a greater depth of dormancy than afterripened seeds, as estimated by lower values of high-limit temperatures ( ). Afterripening increased germination percentage, synchrony, and thermal niche breadth of all nine populations. The highest asynchrony was for immature and mature seeds, and afterripening enhanced synchrony. Based on the new graphical method, has Type 1 nondeep physiological dormancy, and thus, the germination niche is narrow at seed maturity, leading to a delayed germination strategy that is highly dependent on thermal time accumulated during afterripening. Our findings show that there is considerable variation in the germination thermal niche among populations. Temperature regimes in the natural habitats of have played a significant role in shaping variation in thermal niche breadth for seed germination of this annual species. The models used in our study precisely predict germination behavior and thermal niche under different environmental conditions. The germination synchrony model also can estimate germination pattern and degree of dormancy during the year, suggesting a useful method for quantification of germination strategies.

Year of Publication
:
2022
Journal
:
Ecology and evolution
Volume
:
12
Issue
:
8
Number of Pages
:
e9240
URL
:
https://doi.org/10.1002/ece3.9240
DOI
:
10.1002/ece3.9240
Short Title
:
Ecol Evol
Download citation